Showing posts with label 3D BIM modelling. Show all posts
Showing posts with label 3D BIM modelling. Show all posts

Tuesday, January 30, 2018

Key to Success in Implementing VDC

The virtual building design industry is seeing an upward trend worldwide and one of the key components driving this trend is the successful implementation of VDC. Virtual design and construction (VDC) is a process that provides a single platform for all project stakeholders to collaborate and make changes in a project, while working to budgets and deadlines. One of the main features of VDC is that it uses models and data to encourage regular communication between all stakeholders right till completion. What optimises success with VDC is the contribution of qualified professionals who deliver services quickly and at lower cost.







One of the benefits clients enjoy from the VDC process is that they are provided with building information modelling (BIM) capabilities and information that help in design, project planning and construction. Collaboration between clients and contractors at earlier stages are enabled by the use of VDC. Thus, the need for rework is reduced, and project time and costs are saved.

Changes are managed, workflow is collaborated, and documents are monitored in VDC. By identifying key goals, technical concerns are addressed early on. A cloud-based working environment helps collaboration in VDC. BIM in the construction industry facilitates the creation of a single model from design specifications, RFIs and equipment data sheets, helping clients monitor the progression of the project.


Thus, VDC helps firms to:

  • Envision, modify and improve a project without wasting time or materials
  • Collaborate between contractors or subcontractors and clients
  • Establish sustainable elements into design
  • Track labour, materials and schedules for project completion
  • Provide digital delivery of plans for fabrication
Consultants and MEP professionals must work effectively for the overall success of the VDC process. Consultants manage design, but coordination and installation are usually handled by separate trades – mechanical, electrical, plumbing, etc. Smooth implementation of VDC benefits all stakeholders concerned. By using BIM 360 Glue or Revit BIM software tools during design phase coordination, the model can be sent from design to construction. Also, coordination in VDC facilitates prefabrication. BIM modelling tools in VDC streamlines MEP coordination, identifying and resolving conflicts.

The results of successful and effective VDC implementation include:

  • Complete fabrication of MEP elements
  • Reduction of rework for mechanical subcontractors 
  • Less conflicts at field installations
  • Fewer RFIs occur in MEP coordination
  • Significant savings in cost and time
Usually, coordination and installation are carried out by separate trades in the VDC process. Each may not have enough skills or resources to fully implement effective VDC, so profitable and timely delivery of projects could benefit from the right design partner. 

Advantage of Overseas VDC Experts

General contractors usually have their own teams, but they do not always have enough modelling resources or the required skillset. VDC implementation requires expertise in handling precise data with the right tools.

It is, therefore, preferable to employ a VDC expert from the relevant disciplines, who brings technical knowhow and experience in BIM virtual construction to the table. Western firms increasingly find that such experts are being located overseas, especially with experienced partners who have a large pool of qualified technical professionals and extensive experience working in the US, UK and other Western markets, leading to accurate design services, greater profits and on-time deliveries.

Monday, June 29, 2015

How Open BIM Facilitates Collaborative Design?



Due to its multifaceted benefits, building information modelling (BIM) is rapidly gaining traction in the AEC industry as the key pre-construction planning, construction management, and post-construction facilities management tool. Whilst many firms have transitioned to this ‘intelligent’ model-based process, the ‘real’ potential of BIM can only be achieved by open exchange of design and non-design project information amongst key project stakeholders: architects, structural engineers, MEP design consultants, MEP engineers, and other trade subcontractors.

A common challenge faced by mid-sized to large projects is that not all project participants use the same BIM application. This is where the concept of closed BIM and open BIM comes into play. The above two approaches are fundamentally different ways of looking at 3D BIM modelling.
                                                                                           
Closed BIM, also known as ‘lonely BIM’, is a BIM environment wherein the same version of a BIM application is used by all key project stakeholders. This approach may also include different trades using the BIM-compatible applications from the same vendor. As a case in point, the lead architect uses Revit Architecture to model architectural elements. The structural engineer uses Revit Structure to take the architectural BIM model as the reference and define the building’s structure whilst the MEP design consultant uses Revit MEP to model building services. Although no file conversion is required in the closed BIM approach, the process is restrictive in the sense that it only allows project participants well-versed with certain BIM tools to collaborate, thereby not allowing ‘true’ integration.

On the other hand, open BIM is a workflow wherein all participants can collaborate and exchange project information with each other using non-proprietary, neutral file formats irrespective of the BIM tools and applications they use. The information exchanged is not only limited to the BIM model’s geometric data but also includes other parametric data, such as specifications, quantity take-offs, material procurement, cost estimation, and construction phasing. Most common open BIM protocols currently in use include Industry Foundation Classes (IFC) and Construction Operations Building Information Exchange (COBie).  

Whilst IFC allows exchange of both geometric and non-design data amongst different applications that support open BIM, COBie only allows facilities management data to be exchanged. Using IFC, the architectural BIM model created by the lead architect’s design team in Graphisoft ArchiCAD can be opened and manipulated by the structural engineer when his/her team works in Tekla Structures. Similarly, the integrated architectural and structural BIM model can be imported into Revit MEP platform by the lead MEP consultant. Once the detailed MEP design is complete, the federated model can be taken into a clash detection and 3D BIM coordination tool, such as Navisworks again using IFC format. This leads to workflow-level collaboration amongst key project members which is the essence of BIM compared to the conventional 2D CAD workflows.  

At XS CAD, we have an extensive know-how of both open BIM and closed BIM methodologies due to the fact that we have provided 3D BIM modelling and 3D BIM coordination support to architects, MEP engineers, and contractors in the US, the UK, Canada, Australia, and India. To find out more about how your project can benefit from our BIM modelling services, contact us.