Friday, April 18, 2014

Building Information Modelling (BIM): An Indispensable Decision-Making Tool for Contractors



General contractors, also referred to as main contractors in the UK, play an essential role in managing the cost and schedule of highly complex construction projects, particularly during the post-design phases. Professional contracting firms and professionals are involved in a list of crucial tasks. These include diligently studying construction drawing sets developed by architects, seeking local construction permits and licenses, examining day-to-day on-site activities, estimating project cost, monitoring schedules, and serving as a key bridge between key trades, including mechanical services, electrical services, plumbing services and fire protection services.

XS CAD’s 3D BIM modeling and 3D BIM coordination services assist general contractors (main contractors) by providing them with a high degree of predictability and enabling on-time completion of projects. Considering that general contractors (main contractors) bear significant risk of project implementation, they appreciate the advantage of our BIM services.

Owing to our extensive experience in pre-construction planning, multi-service BIM coordination, and BIM modeling for education, commercial, healthcare, leisure, and residential projects, XS CAD has served as a valuable partner to general contractors (main contractors) in the US, Canada, Australia, India, and the UK to support the design process for architectural, structural and MEP disciplines.   

Apart from helping contractors deliver time and cost efficiencies on their projects, our tailored BIM services and MEP spatially coordinated models enhance coordination and interoperability between general contractors (main contractors) and all the subcontractors responsible for each of the building services -- mechanical, electrical, plumbing, and fire protection. Since the parametric objects created within BIM models represent actual elements within a construction project, this information is valuable for designers, installers and cost consultants.

Whilst 3D BIM modeling services support contractors by offering them a thorough pre-construction visualisation with regards to structure, architectural elements, MEP spatial coordination, clash inspection, and interference analysis, 4D BIM allows them to create time-based virtual mock-ups, also known as sequence-based simulations to improve productivity on site. Additionally, 4D BIM services help them detect time and workflow-based clashes resulting in efficient materials and equipment planning, besides improving the flow of multidisciplinary personnel in a constrained space and time.

Furthermore, XS CAD’s 4D BIM Services help general contractors (main contractors) test several "what if" scenarios and make improvements if needed. As a result, the simulation of various project sequences relative to their planned timeframes enables quick and effective decision-making. This decision-making advantage and accurate predictability offered by our BIM modeling services leads to on-time and cost-effective project completion by contractors for their end customers.

Wednesday, March 12, 2014

CAD and BIM Outsourcing: A Positive Value Proposition to Gain A Competitive Edge

Construction and design documentation form an integral element of any construction project's design and planning stage. With the clients (facility owners) raising benchmarks with regards to quality, cost efficiency and completion timeframes for such projects, the entire AEC fraternity is seeking ways to meet these requirements, whilst staying profitable. In addition to this, there is a growing client-side demand for employing BIM-based 3D virtual planning in combination with traditional 2D CAD methods for multi-faceted benefits. Accordingly, architectural and building services firms are considering CAD and BIM outsourcing as a suitable practice not only to reduce cost but also increase quality, productivity and boost in-house efficiency.
Whether the project requirements include elementary paper-to-CAD conversions or complex MEP modelling and coordination support assignments, there are numerous benefits that architectural, MEP engineering, contracting, project management and MEP consulting firms can derive from outsourcing their construction design and documentation work. Some of them include:

1. Cost-Effective Access to CAD and BIM Expertise

It is extremely difficult for architectural and MEP firms to set up specialised internal teams proficient in developing BIM-based design and construction drawing sets. Transitioning from 2D CAD to BIM is a long learning curve, particularly for small- and medium-sized practises. For such firms, partnering with a third-party vendor who specialises in outsourced CAD services can speed up turnaround times whilst maintaining quality standards and local design regulations.

2. Ability to Concentrate on Core Function

When firms involved in architectural, building services, general contracting, project management and AEC consulting, outsource their CAD and BIM documentation work, they can conveniently reduce operating costs whilst focussing on their respective fundamental services.

3. Support to Share Project Risk

Having a competent and reputed CAD outsourcing partner allows a business to share the project risk. When you subcontract design and construction drawing assignments to a third party, you trim down the risk involved in training your internal team members and having them execute a non-core function. Furthermore, in the AEC industry wherein timelines and quality standards are critical to success, outsourcing can prove to be a valuable route to a business' success.

4. Time and Resources to Develop Internal Team

Outsourcing saves the time, effort, and cost involved in setting up CAD teams, including procuring software licenses, configuring high-tech systems and putting together a team of expert technicians. As a result, the firms that outsource efficiently use the same time and effort to develop their in-house team.

5. Leverage Time-Zone Advantage

By choosing to offload CAD and BIM-driven documentation work, including drafting, 3D modelling, 4D scheduling, MEP drafting, MEP modelling, MEP coordination and clash detection, architectural and MEP engineering firms can easily make full use of the difference in time zones. For instance, if a UK-based architectural practise outsources its design and documentation work to an Indian-based CAD company, your assignment will be worked upon whilst you are away from office and delivered when you return the next morning. As a result, you get round-the-clock operations for your business that will increase productivity.

6. Save on Recruitment Overheads

Offloading CAD and other complex BIM-based design documentation services to third-party providers offers a business the ability to remain flexible and quickly adapt to market fluctuations as the cost, time and efforts of recruiting, training and setting up a quality team of technicians are saved.

7. Enhance End Deliverables

When non-core functions are subcontracted to outsourcing providers, the entire delivery life-cycle shortens whilst maintaining quality benchmarks agreed upon. Since your outsourcing partner can deliver high-quality documentation sets faster, your business can boost up input-to-output time cost-effectively. As a result, you maintain the quality and timeliness of your service, thereby increasing the end client's satisfaction.

8. Trim Operating Costs

Establishing a highly-skilled team of CAD and BIM technicians involves recruitment, employee training, procuring software licenses, besides setting up the hardware and online collaboration infrastructure. When your business chooses CAD and BIM outsourcing as an option, you can cut back on the outlay, time, and efforts required for the same.

9. Provide Competitive Edge

As there is a greater push than ever by all the key stakeholders to avoid budget overruns during all phases of the design and build, outsourced CAD services can certainly prove to be a positive value proposition for architects, MEP (M&E) consulting firms, and general contractors looking for a scalable yet cost-effective alternative to setting up in-house teams. This, in effect, provides a highly competitive edge whilst offering a flexibility to tackle the ups and downs of market cycles.
Kuldeep Bwail is a Director at XS CAD Limited, one of the leading Revit 3D BIM Modeling companies providing outsourced CAD services to architects, engineers, MEP (M&E) consultants and contractors across the UK, US, Australia, Canada, Europe, India and the Middle East.

Wednesday, February 5, 2014

3D BIM Modeling: Key is to Interpret Client’s ‘Real’ Needs



The concept of building information modelling (BIM) has received universal acceptance from the building services, structural engineering and architectural fraternity mainly due to its need for lean construction and also its cross-disciplinary usability. 3D BIM modeling has existed for a number of years now and the industry is aggressively adapting itself to embrace the new workflows of the BIM process; however, there is still a lack of clarity amongst the owners (the clients) as to what exactly they can achieve from these models, what they need to achieve and how they can make optimum use of this concept.
3D BIM Modeling
3D BIM Modeling

This article seeks to explore some beliefs related to the use of BIM and sheds light on when it should be used and to what extent. For the sake of clarity, it is important to know the difference between non-BIM 3D CAD models and a parametric BIM models.

3D CAD models are virtual representations of a facility that provide only visual details. Applications such as AutoCAD Architecture and AutoCAD MEP are used to create 3D CAD models that can be used for design, development, construction and pre-fabrication. On the other hand, BIM models are intelligent models embedded with parametric details that are extremely important for design, development, construction, pre-fabrication, assembly, analysing energy performance and facility management of the built environment. For BIM projects, the details can be effectively shared between different project stakeholders: facility owners, designers/architects, MEP (M&E) engineers, fabricators, consultants and contractors. Revit Architecture and Revit MEP are applications used for BIM modelling whilst Navisworks is employed to detect clashes between different system models.

One of the most crucial aspects that helps decide whether BIM is actually required or not is gaining an in-depth understanding of the model’s purpose. More often than not, there is so much difference between client’s ‘stated’ needs and his/her ‘real’ needs.  In a lot of cases, clients state that they require a BIM model but actually what they require is a smart clash-free 3D model which can be used to extract respective construction drawings. In such scenarios, AutoCAD MEP or AutoCAD Architecture could easily be used to provide a 3D model that meets this need. Alternatively, a BIM software tool could be used to provide a 3D model without providing additional elements such as data rich 'information'.

In other cases, a BIM model may actually be the basis to plan, design, construct, and manage a particular facility. These scenarios require multidisciplinary project stakeholders to access the BIM model at different stages in the project lifecycle. As a result, the most important factor that dictates the success of any project employing BIM is the richness of ‘information’ embedded into the models. So, depending on the project’s scope, a full-fledged BIM model may contain valuable information, such as dimensions of building elements, quantity take-off data, material requirements, time scheduling, costing, prefabrication data, activity simulation, and energy performance. Other important factors that contribute to success of BIM include the data-sharing and interoperability standards to allow smooth multidisciplinary collaboration between key disciplines.

Irrespective of whether the client actually requires BIM or non-BIM CAD model, the BIM wave that has spread across the AEC industry has forced the agenda to adopt a more progressive approach to planning, designing and coordinating models and drawings. The industry continues to transition from non-BIM 2D approaches to collaborative BIM workflows and 3D CAD workflows and even that is a huge shift for the industry. This change is more often than not influenced by the demand side i.e. the clients.

Nevertheless, the current wave of change in favour of adopting BIM applications and processes has helped the entire AEC supply chain embrace intelligent virtual planning and development techniques for architectural and building services design, spatial coordination and collaboration.



Kuldeep Bwail is a Director at XS CAD Limited, one of the leading BIM outsourcing providers offering BIM Services to architects, engineers, MEP (M&E) consultants, and contractors across the UK, US, Australia, Canada, Europe, India and the Middle East.

Monday, January 13, 2014

BIM-led Prefabrication: An Effective Way Forward for Healthcare MEP Projects



Designing and planning for mechanical, electrical, and plumbing (MEP) systems for healthcare facilities brings with it a set of daunting challenges for the entire MEP (M&E) fraternity. Considering the project complexities, stringent building codes, healthcare standards, local regulations, and constricted deadlines, MEP (M&E) designers and contractors are always walking a tight line.

Whilst building information modelling(BIM) techniques at the design stage may improve interdisciplinary MEP coordination, help detect design clashes and streamline scheduling/costing in the preconstruction phase, very little is known about how BIM-led prefabrication of MEP systems offsite can help enhance quality, save time and money, and optimise the logistical flow on site. The BIM design data, embedded in the MEP models, can be used to create fabrication drawings by either using traditional detailing or using fabrication softwares (AutoDesk Fabrication). These drawings display fabrication details which can be directly recognised by the CNC machines for production purposes.

One of the most challenging engineering systems to design, healthcare facilities house a range of medical and therapeutic departments to treat different illnesses. Each of these departments has its own set of requirements for HVAC, electrical, plumbing and fire protection systems as well as plant areas. So, whether the hospital’s MEP system demands HVAC systems with precise humidity control, temperature, and indoor air quality (IAQ) standards or custom isolation for operating rooms, the information rooted in the BIM 3D documents can enhance modularisation of mechanical, electrical and plumbing systems.

Some other MEP components which are specifically used in healthcare facilities include sprinklers, fire suppression systems, high-pressure steam boilers, direct-expansion (DX) cooling systems, and tamper-proof receptacles. As it is well known in the AEC industry worldwide, BIM is a change in approach which brings together all the discipline-specific professionals during the pre-construction phase. On the contrary, the traditional design-bid-build approach lacks coordination between the concerned disciplines.

Accordingly, when MEP (M&E) designers, consultants, and fabricators use BIM for prefabrication of MEP components, the benefits are worthy. Besides, the modularisation of mechanical, electrical and plumbing systems in a controlled environment and installing them on site is highly effective considering its cost savings, quality improvements, labour efficiency, waste reduction, and in-time completion benefits.

Considering the complex nature of MEP (M&E) systems in healthcare facilities and an increase in adoption of BIM, prefabrication and modularisation will offer more productivity and efficiency gains to MEP (M&E) designers, contractors, manufacturers, fabricators, and installers. Modern prefabrication technologies along with integrated project delivery (IPD) can certainly lead to greater predictability, timely project completion, and increased cost savings.

BIM Drives Cost-Efficiencies for Plumbing Design


Since our construction industry is grappled with severe productivity issues and tight margins, the AEC industry is striving hard to come up with new ways of improving productivity, reducing construction costs and delivering a better-built building. Building Information Modeling, a new technological advancement in the AEC industry after CAD seems to have the potential to address these issues.

As per the definition of BIM by The National Building Information Model Standard (NBIMS), “BIM is a digital representation of physical and functional characteristics of a facility and it serves as a shared knowledge resource for information about a facility forming a reliable basis for decisions during its life cycle from inception onward”. BIM has evolved from being just a buzzword to the centrepiece of AEC technology and it has significant benefits for plumbing design.

BIM enables a 3d virtual representation of the plumbing systems thus helping to better understand the final outcome, make more informed decisions and detect collisions. One of the major benefits BIM technology serves for plumbing is interference-checking. Using BIM to detect early collisions helps to prevent costly design changes during the actual construction process whilst also reducing guesswork and errors.

Since the underground plumbing lines are located in reference to the foundations; BIM enables a plumbing designer with actual building footings marked by the structural engineer to preserve the structural integrity of the building. With the help of the building footings, a plumbing designer can easily coordinate the underground routing without compromising the structural design of the building. 

Building Information Modeling is an ‘information’ rich model.  In addition to building shape, costs, design, construction time, physical performance, costs and logistics, BIM also provides information about two additional parameters in the case of plumbing fixtures – information about the required gpm flow of the standard fixture and the reduced gpm flow. 

With an aim to conserve energy and natural resources, there has been an increased focus on green building projects. BIM facilitates easier identification of systems in LEED Plumbing Design by creating different colour systems. Since there is a variation in colour, identifying grey water routing becomes easier and hence helps to prevent cross contamination with other waste systems.

BIM creates a unified working environment with multiple disciplines working together on a single file. A plumbing engineer can create a design for hot and cold water and simultaneously check the HVAC design worksheet for conflicts.

BIM serves a plethora of benefits for plumbing design such as increased efficiency, accuracy and coordination of the system as well as reducing the time and cost involved in it.